Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(24): 243201, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181131

RESUMO

Photoinduced phase transitions in correlated materials promise diverse applications from ultrafast switches to optoelectronics. Resolving those transitions and possible metastable phases temporally are key enablers for these applications, but challenge existing experimental approaches. Extreme nonlinear optics can help probe phase changes, as higher-order nonlinearities have higher sensitivity and temporal resolution to band structure and lattice deformations. Here the ultrafast transition from the semiconducting to the metallic phases in polycrystalline thin-film NbO_{2} is investigated by time-resolved harmonic spectroscopy. The emission strength of all harmonic orders shows a steplike suppression when the excitation fluence exceeds a threshold (∼11-12 mJ/cm^{2}), below the fluence required for the thermal transition-a signature of the nonthermal emergence of a metallic phase within 100±20 fs. This observation is backed by full ab initio simulations as well as a 1D chain model of high-harmonic generation from both phases. Our results demonstrate femtosecond harmonic probing of phase transitions and nonthermal dynamics in solids.

2.
Phys Rev Lett ; 129(17): 173202, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332250

RESUMO

High-harmonic generation is typically thought of as a sub-laser-cycle process, with the electron's excursion in the continuum lasting a fraction of the optical cycle. However, it was recently suggested that long-lived Rydberg states can play a particularly important role in high harmonic generation by atoms driven by the combination of the counterrotating circularly polarized fundamental light field and its second harmonic. Here we report direct experimental evidence of very long and stable Rydberg trajectories contributing to high-harmonic generation in such fields. We track their dynamics inside the laser pulse using the spin-orbit evolution in the ionic core, utilizing the spin-orbit Larmor clock. We confirm their effect on harmonic emission both via microscopic simulations and by showing how this radiation can lead to a well-collimated macroscopic far-field signal. Our observations contrast sharply with the general view that long-lived Rydberg orbits should generate negligible contribution to the macroscopic far-field high harmonic response of the medium.

3.
Science ; 354(6313): 734-738, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27846602

RESUMO

The dynamics of quantum systems are encoded in the amplitude and phase of wave packets. However, the rapidity of electron dynamics on the attosecond scale has precluded the complete characterization of electron wave packets in the time domain. Using spectrally resolved electron interferometry, we were able to measure the amplitude and phase of a photoelectron wave packet created through a Fano autoionizing resonance in helium. In our setup, replicas obtained by two-photon transitions interfere with reference wave packets that are formed through smooth continua, allowing the full temporal reconstruction, purely from experimental data, of the resonant wave packet released in the continuum. In turn, this resolves the buildup of the autoionizing resonance on an attosecond time scale. Our results, in excellent agreement with ab initio time-dependent calculations, raise prospects for detailed investigations of ultrafast photoemission dynamics governed by electron correlation, as well as coherent control over structured electron wave packets.

4.
Nat Commun ; 7: 10566, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887682

RESUMO

Electron dynamics induced by resonant absorption of light is of fundamental importance in nature and has been the subject of countless studies in many scientific areas. Above the ionization threshold of atomic or molecular systems, the presence of discrete states leads to autoionization, which is an interference between two quantum paths: direct ionization and excitation of the discrete state coupled to the continuum. Traditionally studied with synchrotron radiation, the probability for autoionization exhibits a universal Fano intensity profile as a function of excitation energy. However, without additional phase information, the full temporal dynamics cannot be recovered. Here we use tunable attosecond pulses combined with weak infrared radiation in an interferometric setup to measure not only the intensity but also the phase variation of the photoionization amplitude across an autoionization resonance in argon. The phase variation can be used as a fingerprint of the interactions between the discrete state and the ionization continua, indicating a new route towards monitoring electron correlations in time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...